Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measured Emissions of Small Engines under Steady State and Transient Operation

1994-09-01
941806
The exhaust emissions of off-road and utility engines have recently come under increasingly thorough scrutiny and are now becoming the subject of federal regulations. While the most straightforward emissions guidelines relate to steady-state engine performance, it is well known that duty cycles of many small engines have a transient content and that its significance can vary strongly from application to application. Hence, it is important to examine how measured emissions change when the transient content of a test cycle is varied, and what kinds of steady-state and transient test cycles might realistically imitate operational conditions. These questions have been addressed in an experimental study in which several small two- and four-stroke engines have been tested under steady state and transient cycles. The same tests were also carried out when these engines had been adjusted to operate at leaner air-fuel ratios, as might be required by forthcoming regulations.
Technical Paper

Development and Application of a Shape-Topology Optimization System Using a Homogenization Method

1994-03-01
940892
The shape and topology optimization method using a homogenization method is a powerful design tool because it can treat topological changes of a design domain. This method was originally developed in 1988 [1] and have been studied by many researchers. However, their scope of application in real vehicle design works has been limited where a design domain and boundary conditions are very complicated. The authors have developed a powerful optimization system by adopting a general purpose finite element analysis code. A method for treating vibration problems is also discussed. A new objective function corresponding to a multi-eigenvalue optimization problem is suggested. An improved optimization algorithm is then applied to solve the problem. Applications of the optimization system to design the body and the parts of a solar car are presented.
Technical Paper

Theoretical, Computational and Experimental Investigation of Helmholtz Resonators: One-Dimensional versus Multi-Dimensional Approach

1994-03-01
940612
Helmholtz resonators are widely used for the noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationally and experimentally. By considering one-dimensional wave propagation through distributed masses in the connector and cavity, a closed-form expression for the transmission loss of axisymmetric configurations is presented, thereby partially eliminating the limitations of a lumped-parameter analysis. Eight resonators of fixed neck geometry and cavity volume with length-to-diameter ratios of the volume varying from 0.32 to 23.92 are studied both computationally and experimentally. The first of the two computational approaches employed in the study implements a finite difference time domain technique to solve the nonlinear governing equations of one-dimensional compressible flow.
Technical Paper

Heavy Truck Ride

1985-04-01
850001
Designing trucks for good ride characteristics is a challenge to the engineer, given the many design constraints imposed by requirements for transport productivity and efficiency. The objective of this lecture is to explain why trucks ride as they do, and the basic mechanisms involved. The response of primary interest is the vibration to which the driver is exposed in the cab. Whole-body vibration tolerance curves give an indication of how those vibrations are perceived at the seat; however, ride studies have shown that visual and hand/foot vibrations are also important to the perception of ride in trucks. The ride environment of the truck driver is the product of the applied excitation and the response properties of the truck. The major excitation sources are road roughness, the rotating tire/wheel assemblies, the driveline, and the engine.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Technical Paper

The Effect of Some Fuel and Engine Factors on Diesel Smoke

1969-02-01
690557
Possible mechanisms for smoke formation in the diesel engine are discussed. Emphasis is placed on the effects of some engine and fuel factors on carbon formation during the course of combustion, including cetane number, fuel volatility, air charge temperature, and after-injection. The tests were made with a single-cylinder, open chamber research engine, with three fuels, covering a wide range of inlet air temperatures and pressures. There is evidence that smoke intensity increased with increase in the cetaine number of the fuels with inlet air temperatures near atmospheric. Increase in the air charge temperature caused an increase in smoke intensity for volatile fuels and had an opposite effect on less volatile fuels for the open chamber engine used. The smoke intensity was found to increase dramatically with after-injection, with all other parameters kept constant. The concept that flame cooling is the main cause for smoke formation is examined.
Technical Paper

Mixture Motion - Its Effect on Pressure Rise in a Combustion Bomb: A New Look at Cyclic Variation

1968-02-01
680766
Cycle-to-cycle variation of pressure is a common problem in all spark-ignition engines. To examine the suspected influence of mixture-motion on this variation, a study was performed in a constant volume cylindrical bomb in which a jet of propane-air mixture was directed at the initial flame kernel. The rate of pressure rise of the jet-influenced combustion was compared to the rate for combustion in a quiescent mixture. The flame area, obtained using a spark schlieren photographic technique, and the calculated combustion rate were correlated with the pressure rate. The major results were: the rate of pressure rise increased approximately linearly with mixture jet velocity; and the width of the mixture-jet had an effect on the rate of pressure rise. A jet profile width slightly greather than the spark-gap produced the highest rate of pressure rise.
Technical Paper

The Effects of Mixture Motion Upon the Lean Limit and Combustion of Spark-Ignited Mixtures

1967-02-01
670467
The object of this research was to learn more about the effects of mixture motion upon ignition in spark ignited piston engines, and to determine how variations in mixture velocity alter the combustion process. To provide effective means for producing and measuring the mixture velocity, all tests were made in a constant volume bomb, using mixtures of propane and air. The effects of mixture motion on the lean spark ignition limit, rate of pressure rise, and burning time were determined for mixture ratios ranging from stoichiometric to the lean limit. The mixture pressures corresponded to those in Otto cycle engines at the time of spark occurrence. The results reveal that a mixture velocity of 50 fps, relative to the spark plug, requires an enrichment of 17% with respect to the stagnant lean limit. Increases in mixture velocity were found to greatly increase the rate of pressure rise during combustion. This effect was more pronounced for lean mixtures than for stoichiometric mixtures.
X